
DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 1

DMDC QA TESTING GUIDELINES
v. 0.8

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 2

Table of Contents
(NOTE: Use CTRL-click to jump to a location.)

1.0 Purpose .. 4

1.1 Scope ... 4

1.2 DEERS Analysis .. 4

2.0 Testing Overview .. 4

3.0 Common Data Scenarios Needing Testing ... 5
3.1 Identifiers ... 5

3.2 Types of persons .. 5

3.3 Person in multiple (two+) families .. 5

3.4 Names .. 5

3.5 Dates .. 6

3.6 Data of Birth (DOB) / Age / Death Date ... 6

3.7 Data segments (PNL, PNLEC, Enrollment, etc…) ... 6

3.8 Enrollment data .. 6

3.9 ‘Numbers’ as strings .. 7

3.10 Soft Delete (Cancelled) .. 7

3.11 Gender ... 7

3.12 Identity ... 7

4.0 Application Versioning ... 7

5.0 Test Data Management ... 7
5.1 DOOR: Tracking Data Usage in Model Office .. 8

5.2 Finding Data to match scenarios .. 8

5.3 Creating test data ... 8

5.3.1 Data creation tips and tricks ... 9

5.4 Test data repository ... 9

5.5 Initializing Test data ... 9

6.0 Test Heuristics .. 10
6.1 Boundary value Analysis ... 10

6.1.1 Misc Boundaries at DMDC ... 10

6.2 Equivalence Class Analysis .. 10

6.2.1 Equivalence at DMDC .. 11

6.3 All-pairs analysis .. 11

6.3.1 Pair analysis at DMDC… .. 11

6.4 Misc application scenarios .. 11

7.0 Test Process .. 12
7.1 Get Involved Early .. 12

7.2 Have a Plan .. 12

7.3 Keep Good Notes / Testing Documentation .. 13

7.4 Identify Test Cases ... 13

7.5 Test Case Objectives ... 14

7.6 Review! .. 14

7.7 Flesh out Test Cases in a Test Suite / Matrix .. 14

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 3

7.8 Execute Tests ... 15

7.9 Report .. 16

7.10 Review ... 16

7.11 Test Maintenance ... 16

8.0 Issue / Bug / Defect / Ticket Tracking .. 16
8.1 “Your bug report is your representative” .. 16

8.2 Terminology “What is an Issue / Ticket” .. 16

8.3 Who enters Tickets ... 17

8.4 Top Tips ... 17

8.5 Notifications .. 18

8.6 Issue Lifecycle “A Bugs Life” ... 18

8.7 Tracking Data Model Issues .. 19

9.0 Automation .. 20
9.1 Deciding what (and how) to automate ... 20

9.2 Different Types of Automation .. 20

9.2.1 Batch test automation ... 20

9.2.2 TestPartner Test Automation .. 21

9.2.3 Miscellaneous Tools / Processes ... 21

9.2.4 Additional Info ... 21

9.3 “Oracles” to use in Test Automation ... 21

10.0 Monitoring Testing (AppMonitor) .. 22

11.0 Security Testing .. 23
11.1 Authentication, Authorization and Password Changes ... 23

12.0 Testing as Part of a System (“End to End”) ... 23
12.1 Auditing & RUN / SUBM ID’s ... 23

12.2 Logging ... 23

12.3 Notifications .. 23

12.4 Triggers ... 23

13.0 SQL .. 23
13.1 Some Wildcards to use with “LIKE” ... 24

13.2 Common SQL Functions / Commands .. 24

13.3 SQL *Plus .. 25

13.3.1 SQL *Plus Formatting ... 25

13.4 Trigger / Procedure Testing .. 26

14.0 Oracle Data Dictionary ... 26

15.0 Potential Future Topics .. 26

Appendix A: Glossary ... 26

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 4

1.0 Purpose
The purpose of this document is to help the QA team become more effective:: find and report more issues and do
so more quickly and efficiently. To achieve this goal, QA must share its methods for best practices and standards
so that communication and test efficiency can be improved.

1.1 Scope
This document provides testers with guidelines for testing applications. The document covers the general
processes and templates that are used within the West Coast (WC) testing group. The focus is primarily on
functional testing.

This initial version is focused on capturing and refining existing processes. Over time this process will
progress and be used to identify and capture additional areas where improvement may be necessary. These
areas may include additional testing practices and testing tools and resources used in performing application
development testing.

This document does not focus on configuration testing, conversion testing, data integrity testing, fallback
testing, portability testing, regression testing, security testing, or other more specific testing at this time.

1.2 DEERS Analysis
A recent short survey was performed within DEERS, the results of are as follows:

(Note that these results may apply to testing in both development and QA)

1. Very little, or no, planning for testing throughout the application development life cycle.

2. We cannot measure the effectiveness of testing.

3. What needs to be tested?

4. Heavy reliance on QA for quality of software.

5. There are different testing processes or procedures. The best testing processes are not shared.

2.0 Testing Overview
Software testing is the process used to help identify the correctness, completeness, security and quality of
developed computer software. Testing is a process of technical investigation, performed on behalf of
stakeholders, that is intended to reveal quality-related information about the product with respect to the context in
which it is intended to operate. This includes, but is not limited to, the process of executing a program or
application with the intent of finding errors.

More ‘theory’ on testing can be found at http://en.wikipedia.org/wiki/Software testing

Other items to work in:
 Psychology matters – testers find more issues if looking to find issues as opposed to looking to

prove that an application works. (Chapter 2, “The Art of Software Testing, Second Edition”)

 The “economics” of testing: "Given constraints on time and cost, the key issue of testing becomes:

What Subset of all possible test cases has the highest probability of detecting the most errors?" --
(Chapter 2, “The Art of Software Testing, Second Edition”)

 Where test case selection comes in:

 Use Equivalency Classes: identify the classes of test cases (with intent to only run one or two

cases within the classes)

 Boundary Analysis: many issues occur on the edge

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 5

3.0 Common Data Scenarios Needing Testing
The below list identifies a subset of common data scenarios that may need testing in a given application (not all
items are applicable to all applications.) Many of these items have been identified via bugs found in existing
products.

3.1 Identifiers
1. Using different ID types, especially for IDs in different tables – PN_ID and DOD_EDI_PN_ID are most

commonly used. Reason: have had bugs where data, such as OGP, is returned when pulling with an
identifier from PN_XR, but doesn’t work when pulling via DOD_EDI_PN_ID or HICN. Identifiers:

a. DBN (DoD Benefit Number) (DEERS_FAM_ID + DEERS_BNFRY_ID, in MD_BNF)
b. HCN (Health Care Number) – An external name for the DEERS_FAM_ID (see below)
c. DEERS_FAM_ID (MD_BNF if primary source; also in BNF_SAT)
d. DMDC_ID
e. DOD_EDI_PN_ID (also called ‘PTNT_ID’, in EDI_SAT, and sometimes EDI_CFN) NOTE: Max

value supported by the ‘core’: 2,147,483,647 (2^^31-1)
f. HICN (Health Insurance Carrier Number? in HIC table); supported by a limited number of

applications
g. PN_ID (SSN, FIN, ITIN, TIN, …) (in PN_XR & SF_XR for sponsors)

2. IDs (SSN, FIN, etc) with leading 0’s
a. (some developers have treated SSN as a number, causing applications to fail when used with

IDs having one or two leading 0’s)
3. Persons having old and new identifiers (PN_ID, DOD_EDI_PN_ID) – inquiries using old & new identifier

(some applications return the identifier passed in, others return the current identifier)
4. Person with two SSNs
5. Identifier ‘valid’ but type is not (passing DFI, but saying it is an SSN)
6. Pulling a dependent when looking for a sponsor and pulling a sponsor when expecting a dependent

(within same family, different family)
7. Also see ‘Dual Eligibility’ section.

3.2 Types of persons
1. Sponsor
2. Dependent (spouse, child, parent, …)
3. Newborn (yes, a special category called ‘Newborn’)
4. Non-affiliated
5. VA (?)
6. Other?

3.3 Person in multiple (two+) families
1. Child of a service member joins the service (before and after eligibility from the parent goes away)
2. Service member marries a service member
3. Child of two service members
4. Person is former spouse of one service member and the current spouse of another service member

3.4 Names
1. Special characters (space, ‘, -)
2. Null first name, Middle name, cadency name (yes, first name is not required)
3. Short name (1 or 2 characters)
4. Max length name (per PN table)
5. Mixed capitalization (McAndrew, etc)
6. Suspense vs non-suspense values
7. Use of aliases (AN table)
8. Leading/trailing white space should be trimmed (spaces, tabs, etc)

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 6

9. Leading numbers should be removed from first, middle, last
10. Data in SUSP fields
11. Display data containing numbers

3.5 Dates
1. Months with single digit and two digits; leading 0’s
2. First day of month, last day of month, leap date

3.6 Data of Birth (DOB) / Age / Death Date
1. Person over 100; born in 1800’s
2. Under / over (some medical/dental rules: 4 (dental), 21, 23, 26, 65
3. Person with null birthdate (yes, this happens in our database)
4. Suspense birth and death dates
5. Pulls before birth and after death

3.7 Data segments (PNL, PNLEC, Enrollment, etc…)
1. No segments in a given table (where allowed)
2. Single segment
3. Historic / Current / Future segments
4. Segment lengths (multi month, multi-year, less than month, single day)
5. Segment start/end dates (begin, mid, end of month – month with 30, 31, or 28/29 days)
6. Multiple Non-over lapping (continuous vs non-continuous)
7. Multiple Overlapping segments -- Examples include:

a. PNL: Civilian/Contractor who is a retired service member
b. PNL: Civilian/Contractor who is in the Guard / Reserve
c. PNLEC/PNL : Transitional Assistance (PNLEC) overlapping PNL (such as Retiree,

Reserve/Guard, civilian, etc)
d. NOTE : PNL/PNLEC overlap rules in the c_spon_coll62 table of PDR
e. See enrollment section for enrollment overlaps

8. Data changes within a given segment. For example:
a. Pay Grade (PG) or Unit (UIC) changing during a personnel (PNL) segment
b. Various activations (PNLEC) within a given PNL segment

3.8 Enrollment data
1. Different types of enrollments

a. Medical, Dental, Special
2. Different subclasses of enrollments: Medical

a. Eligibility from ASG_HCDP, have PCM
i. Standard, PRIME

b. Eligibility from MED_ELIG, do NOT have PCM, plus other rules
i. TRS (TRICARE Reserve Select)
ii. TRR (TRICARE Reserve Retired)

c. Eligibility from MED_ELIG, some do/don’t have PCM, plus other rules
i. TYA (TRICARE Young Adult)

3. Fee vs Non Fee paying plans
4. ‘011’/’013’ HCDP_PLN_CVG_CDs can overlap with other enrollments (HCDP / MHCC / UMHCC / etc,

tables)
5. Multiple enrollments per policy
6. Multiple contractors (EMC) or PCMs (TPCM_SLCT) per enrollment
7. Transitions from one enrollment type to another
8. Segment length

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 7

3.9 ‘Numbers’ as strings
1. For any ‘Number’ being stored as a string (PN_ID), test with leading 0’s to ensure that the code does not

use as a number and trim leading 0’s

3.10 Soft Delete (Cancelled)
1. ‘Cancelled’ segments: segments with a TRSN_CD of ‘F’, ‘E’, and ‘4’ should NOT be returned/used by

most applications

3.11 Gender
1. Null gender
2. Changed gender
3. Suspense gender
4. ALIAS_SEX table

3.12 Identity
1. TBD
2. Current vs expired vs revoked
3. None, single, multiple
4. CAC vs PIV
5. Token Characteristics
6. …

4.0 Application Versioning
A few brief thoughts on versioning. Some might be obvious, but….

 Every build to QA should have a unique version number

 “It would be nice”™ for every product release track to have a unique portion of the version
number. Aka, when talking about the a release of an application such as GIQD, can refer to that
release as the 4.1 release, without having to reference 4.1.00.00.3 (or whatever), which changes
in every build to QA.

An implementation of this style of version is the standard for Identity Web Services (IWS)
applications, and is documented at
http://teamsites.ds.dhra.osd.mil/teams/devel/LegacyTwiki/IWSVersioningScheme.html

5.0 Test Data Management
An issue that QA encounters while testing is its ability to maintain a “clean” set of test data. In this context a clean
set of test data would be: A predetermined set of data that is purposely in a known state. This ideal has not
always been achieved as test data ‘ages out’ and the databases are shared by multiple QA testers, Research,
and others.

In order to maintain a clean set of test data QA testers should observe the following:

 You should change only the data you “own” in Model Office (see the DOOR tool for information on
ownership tracking)

 If you do not currently own the required data in Model office then create the data either by cloning
an existing record using DataCopy, creating new data using tools such as RAPIDS and WebDOES, or
find a record in production and copy into the test region.

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 8

 If testing a read only application, you may be able to leverage test data already in use by other
read-only applications (e.g. HCCMTF, Claims, etc.). Contact the primary tester of the read-only
application for information on test data, check DOOR, OR locate the data in Model Office using SQL.

 See the Testing Assignments Sheet for information on an application’s primary tester.

 Some SQL used in the past to find test cases can be found at
K:\Qa_Testing\SQLscripts\research\test_case_lookup

 (Note: Some data may already be in use in an update application which will change the data)

5.1 DOOR: Tracking Data Usage in Model Office
As stated above, QA has one set of databases shared by the entire QA organization as well as Research, Data
Quality, etc. These databases are used for:

 Standard QA Testing
 Regression Testing
 Automated Testing using “Gold File” result analysis/comparison

Before using any data for testing it is important to check ownership of that data using DOOR, the Data Ownership
Operational Repository. It is a database that tracks which applications use testing data in Model Office on an
ongoing basis, with the goal of minimizing time-wasting collisions.

Basic usage principles:

 You claim a person for an application you test, not for yourself.

 You can only claim sponsors that already exist in the PDR database.

 Claiming a sponsor ‘claims’ the whole family.

Additional information on DOOR is available from SharePoint under
http://teamsites.ds.dhra.osd.mil/teams/es/qa/Tools/default.aspx. The DOOR database can also be checked using
SQL. See K:\Qa_Testing\SQLscripts_shared_readme_SQL_overview.doc for info on using DOOR (and other
shared SQL files)

If/when that data was last modified, use the ‘Run Audit’ tool (from ‘DMDC Tools’) to determine who, if anyone, has
made a change to the data using one of the DMDC tools (this tool cannot detect if changes were made using
SQL.)

5.2 Finding Data to match scenarios
 Some data defined with test cases (especially in automation)
 Search the database (custom SQL or previously created SQL, such as can be found at

K:\Qa_Testing\SQLscripts\research\test_case_lookup)

NOTE: check DOOR (see above) before modifying data

5.3 Creating test data
There are various methods for creating test data in QA testing environments. For Model Office:

 Clone existing data in Model Office using DataCopy
 Copy data from Production or contractor test using DataCopy
 Create using RAPIDS (see your lead for info on using RAPIDS)
 Create / update / change using the ‘QA Tools’ application (see the primary tester / your lead)
 Create / change using SQL (requires deep knowledge of the database)

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 9

 Partial data sets using SQL to create data initialization SQL (for example, SQL is available to create
SQL that re-creates enrollment data -- See
K:\Qa_Testing\SQLscripts_shared_readme_case_creation.doc for info on this (and other shared SQL
files)

5.3.1 Data creation tips and tricks

 When creating a person with photo image data, you need to manually put records in the
e2r2.PHOTO table for that person. There's no synonym in ADW for this table. Then you can
run SQL scripts against ADW that will insert/update/delete the PHOTO_IMG table that will be
returned by the record generator.

5.4 Test data repository
There is a ‘DataRepository’ for test data in Model Office (plus a different one for DBIDS NextGen and
one in ‘Test’ for developers to use.) It is a bucket to hold data in a known state, in a database that is
NOT used for actual testing. It is used to ensure that you can get your data back into a known good data
state.

When you have your data (claimed in DOOR) in a good initial state, copy the data (DataCopy) into the
DataRepository for future use. Information on DataCopy is available at
http://teamsites.ds.dhra.osd.mil/teams/es/datasvcs/datacopy/SitePages/Home.aspx - please see your lead
type(s) if you have additional questions.

5.5 Initializing Test data
For repeatable testing, it is important that your test data is in a known state that support the scenario
being testing. A number of methods are used to ensure that your test data is in a known good state.

Regardless of the method used, it is good to ensure (explicitly check) that your data is in a good state.
For example, if you need to ensure that derived data isn’t created for a specific scenario, make sure the
scenario actually exists!

Methods of ensuring that data is in a known initial state:

 GUI DataCopy

 Command-line DataCopy (usable from Automation, such as PFT)

 DBIDS DataCopy (used in DBIDS NextGen)

 Person/family deletion using DataCopy (used in PFT and other automation)

 Enrollment re-creation SQL (used in MHCDP, DHCDP, NtfyD, and other automation)

 Custom SQL for data creation (NOT recommended for PDR/MedSat; used for ADR/ADW)

 SQL for data updates (used in multiple applications)

 No initialize, just check (only for read-only applications; can be faster than explicitly
initializing data on ever test run; used in automation such as HCCI and Claims Coverage)

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 10

6.0 Test Heuristics

Lesson 38 from “Lessons Learned in Software Testing”: Use heuristics to quickly generate ideas for tests.

 “A heuristic is a way of making an educated guess”

 “Test at the boundaries”
 “Test every error message”
 “Run tests that are annoying to setup”
 “Avoid redundant tests” (equivalency analysis, all-pairs)

6.1 Boundary value Analysis
From WikiPedia: http://en.wikipedia.org/wiki/Boundary_value_analysis
“Boundary value analysis is a software testing design technique to determine test cases covering off-by-one
errors. The boundaries of software component input ranges are areas of frequent problems. ”

 High & low boundaries
 Min-1, min, min+1
 Max-1, max, max+1
 Segments: 0, 1, 2, max (99)
 External & internal boundaries
 Bytes: 64, 128
 Size of pools (DB connections, sessions)

6.1.1 Misc Boundaries at DMDC
 Activation dates – start, end, change
 180 days after projected end of ‘On AD’ condition
 Child’s ages: 4, 21, 23, 26
 Death dates, death+180, death+3Y, last day of month of death
 Plan start dates
 Dates to/from college
 0 segments, 1 segment, many segments
 Enrollment start / end dates (day of, day before, day after)
 90 day historic enrollments
 30/60/90/180 day future segments

6.2 Equivalence Class Analysis
WikiPedia: http://en.wikipedia.org/wiki/Equivalence_partitioning
“Equivalence partitioning is a software testing related technique with the goals:
To reduce the number of test cases to a necessary minimum.
To select the right test cases to cover all possible scenarios. ”

For example, the number of a month (1-12)

 1-12 are in the ‘valid’ partition
 <1 are in invalid partition 1
 >12 are in invalid partition 2

NOTE: that 1-9 and 10-12, while both in the ‘Valid’ partition, they are different lengths and generally should
ensure that dates are tested with 1 and 2 digit months

More info: http://en.wikipedia.org/wiki/Equivalence_partitioning

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 11

6.2.1 Equivalence at DMDC
Different items impact different apps, so not a blanket statement, but some items that are equivalent in some
applications….

 Various branches (Army, Air Force, etc in Active Duty, Reserve, Retired, etc.)
o All ‘Active Duty’, regardless of branch, tend to get the same beenfits
o Tend to get the same medical benefits

 Sponsors have certain characteristics regardless of service status
 Dependents (for some usages; spouse vs child vs parent have different benefit sets)
 Guard and Reserve are quite similar
 Different groups for different age of children: Child under <4, 4-21, 21-23 in college, >23,

incapacitated

6.3 All-pairs analysis
From WikiPedia: “All-pairs testing or pairwise testing is a combinatorial software testing method that, for each pair
of input parameters to a system (typically, a software algorithm) tests all possible discrete combinations of those
parameters. ”

 Combinatorics are the enemy – can’t test all combinations
 Each test should cover multiple parameters
 Part of lesson 54 in ‘Lessons Learned’

Info on wiki: http://en.wikipedia.org/wiki/All-pairs testing

6.3.1 Pair analysis at DMDC…
 Various branches within group (Army, Air Force, etc in Active Duty, Reserve, Retired, etc.)
 Sponsors & dependents (deps depend on app….)
 Guard and Reserve are quite similar
 Child under 4, 4-21, 21-23 in college, between 21/23 and 26 (TYA eligibility, depending on college

and other exceptions), incapacitated
 Activation dates – start, end, change
 180 days after projected end of ‘On AD’ condition
 Death dates, death+180, death+3Y, last day of month of death
 Plan start dates
 Dates to/from college
 0 segments, 1 segment, many segments

6.4 Misc application scenarios

 System to system applications

o All transaction types

o All response types

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 12

7.0 Test Process
We work in a very dynamic environment, where schedules and specifications may not be what we would prefer.
Push back where it makes sense, but we are not the Client. Give honest assessments, highlight risks, and, um,
TEST!

Conversely, being under the DOD, we are audited once a year, which requires a certain audit trail to validate the
testing that was performed. At a high level, the auditors want proof that everything released to production was
tested. For example, we need to show:

 What was tested for a given run (test cases run, test case results.)
 That the code and tests for that release are in Version Control
 That issues are formally tracked

So, need to be agile with good process.

General steps in the testing process are described in the following sections.

7.1 Get Involved Early
1. Review any specifications (CMS, emails, etc) as early as possible.

QA thinks about things differently and is good at finding items that are not fleshed out in the
specifications and/or can see dependencies that are not obvious to others. NOTE starting on the
Test Plan / Test Cases before the requirements are final can help flesh out requirements.

2. Provide comments on what changes may help make things easier to test. There is a

document with general ideas at U:\Everyone\J2EE\QA\testability.

NOTE: what can and cannot be implemented really depends on the project and schedule.

3. Create any needed directories on k: to track information related to the application / change.

7.2 Have a Plan
Planning is the art and science of envisioning a desired future
and laying out effective ways of bringing it about."

--Planning, MCDP5 U.S. Marine Corps

And to paraphrase, “No plan survives contact with the enemy, but better to modify an existing plan than
winging it.”

A good test plan lets you determine your method of attack and estimate the amount of work required for your
project. A good test plan (hopefully) begins with a good functional and technical specification.

The test plan provides the following advantages:

 It will help you organize your thoughts on how to go about testing a software component effectively and
efficiently.

 Others have an opportunity to assist and reinforce your test plan by providing comments on the plan.

 It will be very useful when you're ready to begin testing because you'll have something that you can refer
to as you perform the testing. (a trail map for the daily tests and bugs, and a yardstick for measuring
your progress.)

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 13

 It will be an excellent resource for future testers. Not only will it help them out if they're not familiar with a
software component, but if they come to you asking how you tested a software component, you'll have
something you can show them.

 Documenting all tests allows you to easily reuse and build on them in the future if needed, so your work is
repeatable.

However, as useful as it is, a test plan is just that: a plan. It represents a testing strategy based on the best
knowledge available at the outset of a project. As the test progresses, more will be learned about the
software’s strengths, weaknesses, and vulnerabilities. This should be anticipated and exploited. The key is
to build flexibility into the test plan up front, so that adjustments can be made in real time as you learn and
encounter development issues.

One item to remember: a Test Plan is both a product (client requirement) and a tool to test more efficiently.

Testing should not start until a test plan is created for a given release (unless approved by your Project Lead
/ Manager.)

System Test Plan Template on SharePoint at
http://teamsites.ds.dhra.osd.mil/teams/es/qa/Reference/default.aspx

7.3 Keep Good Notes / Testing Documentation
"There's no time to stop for gas, we're already late"

-- Karin Donker

In QA, we are not just consumers of project documentation (specs, etc), but are also document creators:

1. General notes / quirks / fleshing out of the specs: Even in the best of environments,

specifications do not capture everything we desire as testers (For example, one estimate is that
80% of code is for handling error conditions. 80% of most specs does not cover error handling.)

2. We are required to maintain ‘How to Test’ documentation with the detailed steps on how to

test an application (and good to have if you are the backup of an application!)

As you learn more about an application, keep information in a ???‘qa_notes.doc’/Testing Procedures &
Notes??? file in the ‘specs’ (‘Test Docs’?) directory for the project.

My general rule of thumb: if you ask the developer, Project Manager, QA Lead, etc a question about the
application, if that information is not already in the spec or being added to the spec, add it into your
document. You may forget the answer. The next tester will have the same question.

One item that is especially useful to keep as the tester is a section on “Data Validation” (see "K:\New
DEERS\QA\X12\Test Plans\HCC for MTF Test Plan.doc" for an example.)

Your backup will thank you.

You will thank yourself when you come back to test that area three months (or three years) later, and have
forgotten a detail or two….

7.4 Identify Test Cases
1. Start with an outline of the various equivalency cases and boundary conditions. Try to think

of everything, even though you probably won’t have time for everything. Sometimes, this will be a
part of the test plan.

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 14

2. Provide more detailed test cases (in a new test suite/matrix or add to an existing one), with

TC numbers, and high level initial conditions, steps, and expected results. Prioritize – scale of 1 –
5, 1 being highest: must, should, would be nice, probably not…

NOTE: provide detail for test cases that you think that you will have time to run.

Where possible, design with automation in mind.

Test Suite (Test Case Matrix) Template at
http://teamsites.ds.dhra.osd.mil/teams/es/qa/Reference/default.aspx

7.5 Test Case Objectives
Every test case needs to have a clear test objective (what/why are we testing)

 The highest concentration of analysis occurs during the development of test objectives. It is the
requirement of each QA analyst to develop and demonstrate their aptitude for this analysis.

 Test Objects need to be understandable and reviewable by PMs, BAs, and other members of the
project team. (aka, take it up a level from detailed technical speak)

 Treat test objective creation as specification testing. If you think that there is a problem with the
specification, it is your responsibility to work with the BA to resolve the issue and to update
the PM / Scrum Master when giving status updates on the Objective. Bottom line: the
objectives need to be correct and in sync with the Functional Specification. If they are not,
there is a bug in one or the other that must be resolved before the objectives can be finished.

Test steps need to include the initial state (app, data, environment)

7.6 Review!
Before you go too far down the testing road, have your test cases / outlines reviewed, both by an
experienced tester and then provide an opportunity for the BA / developer to review.

7.7 Flesh out Test Cases in a Test Suite / Matrix
1. Create or find the data needed for the various test cases

NOTE: we have one shared database. Some of the test data is already spoken for. So, for update
applications, it is best to create new data using RAPIDS or find a new person from production and
copy into our test database (careful with the SQL use in production.)

Track your test data in DOOR as noted in the data tracking section

2. Create update / SQL needed for testing (validation SQL, changing data, etc.)

3. Provide detailed steps

It is recommended that you verify the initial condition of the data (using SQL*Plus and a ‘master’
SQL statement for your application.) We have a shared database, and this checks that the data is
in the state expected by the test case. Your master SQL should check only the data needed by the
given application. An example (from MHCDP) : K:\Qa_Testing\SQLscripts\asg_hcdp\mnt_aud2.sql
(it takes a Sponsor DMDC_ID as a parameter.)

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 15

4. Where possible / appropriate, run new test cases before the new app or change comes to QA:
prove that you can cause a failure so that you can prove that the new version of the application
resolves the test case.

5. Automate where appropriate

7.8 Execute Tests
1. Promote software to QA: When an application is ready for testing, the developer will mark it as

‘Ready for Movement’ in CMS. When you are ready to test / done with the current version of the
app in the given region, the QA Tester marks it as ‘Ok for Movement.’
a. Model TWO is our primary test environment
b. Model ONE is used primarily when testing schema changes

2. Review claimed changes/fixes, your plan, etc.

3. Initial build validation: Run a subset of tests to get an overview of the release

a. Run your Acceptance Tests (small subset of total regression suite)
b. Validate Claimed Fixes (may do this before running acceptance tests, depending on the

change/application)
c. Spot check changes

4. “Exploratory Testing” – Sometimes, the best way to learn an application / recent changes is to

experiment with it while thinking about the requirements / end user expectations. Some call this
‘Ad Hoc’ testing, others ‘Exploratory’ (an into at http://www.satisfice.com/articles/et-article.pdf.) If
nothing else, it is a good practice to review your plan to highlight any holes.

5. Run a “full” test cycle

NOTE 1: definition of “full” depends on project, change complexity, available resources, and the
existence of hard dates. As much as possible, if you think it won’t be ‘enough’, discuss with your
QA lead as soon as possible.

NOTE 2: when running tests, I like to do breadth before depth. Ensure all/most functional areas
are working before checking every edge case in one area.

a. Run new test cases. Analyze results.
b. Run regression tests. Analyze results.

6. Thoughts on results analysis:

a. If the actual initial condition does not match the expected initial condition (for example,
someone killed the sponsor in your test family when the sponsor should be alive), try to figure
out who changed, why, who “owns” (been using longer), and either reset to the expected
condition or find new test data.

b. If issue, report (add to Tracker, plus keep a list in your QA directory for the application.)
c. If current results don’t match the expected results, but current is ok, update the expected

results.
d. Add or remove test cases as identified / needed

7. Track / keep the extended team in the loop

a. Keep summary of how many tests exist and their states (pass/fail/blocked/etc)
b. Let the developer know when testing is done, general status (hopefully can provide SOME

good info), and a summary of the issues (point them to the issues list.) Plus other interested
parties: test manager, project lead, etc, which varies greatly by product.

8. Repeat as needed for new builds.

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 16

7.9 Report
When testing is complete, we document the results in a ‘QA SignOff’ document and, for large releases, in a
‘QA Test Report’ (templates on the SharePoint QA templates site.) The QA SignOff provides a concise
summary of the release, the testing that was done, information that the QA team has about the quality of the
project, QA’s recommendation on releasing the project, and documenting any concerns.

It helps ensures that all members of the project team know that the status of the application, and is used by
QA during audits to help document the testing that was done for releases.

The QA SignOff needs to be sent for review at least one week before the product is released (a draft if
testing continues after that point), and provided to the government product owner and your lead(s.) The
SignOff is also included attached to releases within CMS.

7.10 Review
“Quis Custodiet Ipsos Custodes” (Who watches the watchmen?)

Ask your backup, team lead, or other team member to review your work; always good to have a second pair
of eyes look at work product.

1. Review your QA notes – anything that you forgot to add / include?
2. Update acceptance tests? (new functionality? Old functionality no longer used? Better test cases?)
3. Any updates needed to ‘How to Test’?

7.11 Test Maintenance
 Periodically (once a year, for example) review test suites / cases to determine which cases could

be combined or removed without losing coverage.
 The test procedure document (‘How to Test’, ‘How to Test’) should be maintained once a year /

with significant application changes

8.0 Issue / Bug / Defect / Ticket Tracking
Issues are tracked within Jira (http://jira:8888) Information on requesting an account and using Jira is at
http://teamsites.ds.dhra.osd.mil/teams/es/datasvcs/jira/SitePages/Home.aspx

8.1 “Your bug report is your representative”
The above is Lesson #58 from “Lessons Learned in Software Testing” (Kaner, Bach, Petticord.)

Remember it. Live it. (And maybe read the entire chapter 4 on “Bug Advocacy”)

The tickets that you create are your advocates for improving the quality of the product.

Make them count – clear, factual, and easy to understand. Why should I care?

Note: spelling and grammar count.

8.2 Terminology “What is an Issue / Ticket”
Definitions:

 Issue: Any aspect of the software that does not match with what is detailed in the software
specification

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 17

 Ticket: Any item within Jira – could be an issue, enhancement, or task

8.3 Who enters Tickets
Tickets can be entered by anyone on the team, including:

 Quality Assurance

 Development

 Business Analyst

 Database Administrator

 Tech Services

 Internal Project
Management

 External Project
Management

 Integration Team

 etc

8.4 Top Tips

1. Detail all pertinent information that may be useful for diagnosing or reproducing the defect. Key

components of a good ticket include:

1. A clear, concise summary for the ticket. Written at a high-level, understandable by PMs,

BAs, Developers, and QA. (“Summary” field in Jira)

2. As needed, a more detailed description of the problem (“Description” field in Jira)

3. Clear steps to reproduce, including data requirements (“Description” field in Jira; as

appropriate, include impacted test cases in the “Test Case” field)

4. The unexpected behavior seen (“Description” field in Jira)

5. The behavior expected (“Description” field in Jira; as appropriate, reference documented

requirements in the “Specification ID & Type” field)

2. Ensure “ancillary” fields are populated as well (“Affects Version/s”, “Component”, “Found By”,

“Region”, “Test Type”)

1. For issues that were discovered outside of QA, ensure that ‘Found By’ is set

appropriately

3. A good tester will always try to reduce the ‘steps to reproduce’ to the minimum necessary. This

is extremely helpful for the developer and other QA who have to reproduce the defect.

4. Always include in the ticket resolution / verification the unique build number of the version of

software in which the ticket is fixed so that the person closing the defect can verify the resolution

in the correct version of software.

5. All defects must go through the ticket tracking system. If you receive issue reports or resolutions

via email and those reports or resolutions are not in the ticket tracking system, simply bounce the

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 18

emails back to the originator with a brief message: "Please put this into Jira. I can't keep track

using email."

6. Always verify a defect can or cannot be reproduced before recording

7. Record the defect # in the "Comments" column of the QA Test Case Matrix for the associated

Test Cases(s)

8.5 Notifications
TBD; generally automatic within Jira; something need to explicitly notify (email, phone) project
team members

8.6 Issue Lifecycle “A Bugs Life”
1. Issue is identified

2. Ticket is entered into the defect tracking system by any individual with access

3. Item is automatically assigned as per the project rules in Jira (to PM, direct to developer, etc)

4. Project management (Role, not always someone with that title)

 Reviews the ticket

 Assigns the ticket to the appropriate personnel

 Assigns the ticket to the appropriate release

5. Assignee resolves the ticket

6. Assignee updates the resolution of the ticket as appropriate (Fixed, As Designed, etc.)

7. QA is notified of the resolution (email from Jira; state of project)

8. QA reviews the ticket resolution (when the appropriate build is available to QA)

9. QA performs one of the following actions:

 If QA agrees with the resolution (aka, agrees that it’s fixed, etc)

 If a contractor issue (Test Track Pro’ or ‘TTP’ in the summary): QA assign to
the ticket to the reporter for contractor verification

 Otherwise: QA closes the issue in Jira

 QA re-opens the ticket and returns it to project management

10. QA notifies project management of the ticket status

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 20

As always, please ensure to follow general best practices, ensuring that you include the associated
specification / CMS number.

9.0 Automation
Automation is basically any script or program that makes us more efficient relative to doing the same operation
manually.

9.1 Deciding what (and how) to automate
This is the million dollar question, and there isn’t a single answer. In general, automate test cases that are
run multiple times (leverage the investment), and the hopelessly vague “can be automated in such a way
that it will take less time (or better analysis) compared to running manually”.

Many of our applications have relatively simple steps, but need to be run across many different data
combinations. These items are great candidates for automation.

Automating read-only applications is easier than automating add/update applications, but various SQL
statements (or DataCopy) can be used to initialize data into a known state to support automation of update
applications (used for MHCDP and Patient Update.)

A couple of quick introductions to Software Test Automation:

 “An Introduction to Software Test Automation”
http://www.qthreads.com/articles/testing/an introduction to software test automation.html

 Totally Data-Driven Automated Testing” (http://sqa-test.com/w paper1.html)

More TBD…

9.2 Different Types of Automation

9.2.1 Batch test automation
“Batch” (continuously running) testing can be used to test certain batch applications across multiple
persons, and is mostly used for applications that generate ‘derived’ data, such as BDM and HCCMM.

The general process is to create the following:

 SQL script(s) to retrieve the derived data for x number of persons (1,000, for example.)

 A SQL script or batch file to force processing for those persons

 A way to check the status of processing

 Various directories: SQL directory, pre and post processing results directory, and
documentation on testing

And the general process includes:

 Point SQL*Plus to the directory containing the appropriate SQL

 Save the data from the derived tables into a file (this is the original state.) NOTE: if time
permits, it is nice to force a redetermination before moving in the new version of the
application.

 Force processing

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 21

 Wait for processing to complete

 Save the data from the derived tables into a file (this is the ‘after’ data)

 Use a Visual Differencing tool (such as WINDIFF or WDIFF) to compare the original data
with the after data. Research any differences to determine if as expected (data change) or
not (potential issue with the spec or application.) Update the expected results as needed.

For an example, see K:\Qa_Testing\Apps\BDM\batch\readme.txt

This is currently used to test BDM, HCCMM, HCCMD, HCCMS, ASG_HCDP, …

NOTE: this process is not the most effective when there are a lot of changes (many differences to
analyze), but even in those situations it can be used to find crashes or “spins” (infinite loops) in the
application.

9.2.2 TestPartner Test Automation
Microfocus TestPartner is a functional test automation tool that is used within DEERS QA. It has been
used to automate a wide range of applications within DEERS using a data-driven / executable test
matrix design.

At a high level, this type of architecture makes it easier to maintain your automation as the application
changes, which often require changes to automation and the addition/changing of test cases.

The types of applications that are currently automated include:

 XML System-to-system (DCS, RBS, BBS, …)
 DEERS TR System-to-System (Claims Coverage/CCEA, Totals Inquiry, CCD Update...)
 Web Applications (GIQD, CVS, DLPT)
 Batch CR (Continuously running) Applications (BDM, MHCDP, NtfyD, etc)
 Batch “UNIX” Automation (PFT, BEFP, CLADR Sync)
 Thick-client .Net application automation (DBIDS)
 Thick-client Java Swing application automation (RAPIDS)

Additional information on the use of automation is available from the QA SharePoint site.

9.2.3 Miscellaneous Tools / Processes
Some other tools that persons have found useful:

1. SQL to create SQL to reset the data for a family in a number of tables – an example from
MHCDP to re-create enrollment data for a family (HCDP, HCDP_PLCY, HCDP_EMC,
TPCM_SLCT) : K:\Qa_Testing\SQLscripts_shared_readme_case_creation.docx

2. SQL to create multiple input transactions – an example from claims :
K:\Qa_Testing\SQLscripts\hccmtf -- creatclaims1.SQL and creatclaimsp.SQL

9.2.4 Additional Info
 http://teamsites.ds.dhra.osd.mil/teams/es/qa/QA_Automation/SitePages/Framework%20Development.aspx

9.3 “Oracles” to use in Test Automation
One of the biggest challenges in automation is defining accurate, efficient, and maintainable methods,
aka “Oracles”, to determine if an application behaved as expected. Per Douglas Hoffman, there are the
following types of Oracles:

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 22

 “No Oracle”

 True Oracle

 Consistency

 Self Referential (SVD)

 Heuristic

Below is a Video (so CAN’T watch from government account), but a good overview of what goes into
test automation, with an emphasis on strategies for result validation in test automation (which is what he
refers to as an 'Oracle'.)

Using Test Oracles in Automation (NOTE: not for use at work) --
http://video.google.com/videoplay?docid=-
753663485306555503&q=Using+Test+Oracles+in+Automation

The slides (PDF Format) : http://www.softwarequalitymethods.com/H-Papers.html#OracleInAuto

10.0 Monitoring Testing (AppMonitor)
QA tests functionality within 11g AppServer applications (Web/XML) that facilitate keeping a healthy
environment, primarily in production, but also in other regions. This is implemented using a shared
library called ‘AppMonitor’ that can check for app functionality and dependency checks against data-
sources, JMS queues, directories, and work tables. Systems will use it to regularly ensure that
applications are up and running in different regions.

Application testers need to incorporate AppMonitor testing into their core / build verification testing.
Starting October 1, 2012, all 11g AppServer Web/XML application release need to include AppMonitor.
By Feb 16th, 2013, all 11g AppServer Web/XML application need to implement AppMonitor.

AppMonitor is tested similarly to other Web testing – enter a URL (Browser, Toolkit) and check the
results. The result generated by AppMonitor is an XML document. Each test and dependency that is run
returns a status code: 0 for success, and 1 (or any non-zero) for failure.

To run it, add “/appMonitor.status” to your applications base URL, optionally followed by parameters.
For example:

 Basic check of GIQD in Model ONE: http://wm1.int.dmdc.osd.mil/appj/giqd/appmonitor.status/
(systems will run only the basic check in production)

 Full check of GIQD in Model ONE:
http://wm1.int.dmdc.osd.mil/appj/giqd/appmonitor.status/All (used by various folks to research
the root cause when the application is not working as expect)

A few example test cases are included in the example test case matrix (available from SharePoint.)

More information about Application Monitor can be found under:
\\Hobbes\deers\Qa_Testing\Apps\CTIS_WS\APPLICATIONS\AppMonitor and
http://teamsites.ds.dhra.osd.mil/teams/devel/SitePages/AppMonitor.aspx

Please see the QA Assignments by Application document located on the QA SharePoint site for
AppMonitor contacts in QA.

Note that given the nature of our shared environment, QA only tests ‘success’ scenarios for
AppMonitor. It is up to the developer to simulate and test fail scenarios.

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 23

11.0 Security Testing
While most of us do not work with classified data, the data that we do work with is confidential.

11.1 Authentication, Authorization and Password Changes
Many applications provide multiple methods for a person to login (Authentication and Authorization), with the
ability to change passwords for some of the authentication mechanisms.

Authentication can be done for both Operators and Users

Authentication schemes can use SNT, CAC, DFAS Pins, and Personal Information.

Many applications within DMDC use the DC 3 common components for authentication

Test cases that should be useable in the majority of applications for testing the various forms of authorization
can be found at K:\Qa_Testing\Apps\DC3WA\testing\test_cases (Part of the DC 3 regression suite,
maintained by the DC 3 primary tester.)

12.0 Testing as Part of a System (“End to End”)
Most applications at DMDC do not stand alone. Data is created, modified, and consumed by multiple applications.
Most application have auditing and logging requirements. Some applications generate notifications to inform
external partners of changes to the data.

It is important to understand these relationships for an application and to test as needed.

Details TBD….

12.1 Auditing & RUN / SUBM ID’s

12.2 Logging
A log viewer called ‘Splunk’ is available to view the logs generated by Web Applications, and should be used
at the end of testing to validate the results of the testing.

Ask your leadership on how to request access to Splunk.

User,Knowledge, & Search information: http://docs.splunk.com/Documentation/Splunk

12.3 Notifications

12.4 Triggers
Many tables in our databases have triggers that replicate data, validate data, set default values, force
redeterminations / notifications based on a change, etc.

As QA, we need to test the triggers.

Some data on how to view the source of triggers is listed in the following section: ‘Trigger / Procedure
Testing

13.0 SQL
A lot of the work that we do revolved around the data.

Some SQL statements usable across applications are documented in k:\qa_testing\SQLScripts_Shared*.doc

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 27

Added multiple placeholder sections
(Glossary, Common Test Scenarios, “End
to End” testing, SQL, …)
Added in Overview section from EJ’s doc;
need to merge in with other overview / intro
info already within the document.

0.03 2006-11-29

Moved items to the ‘Handbook’ document. 0.04 2006-12-13

Formatted Document 0.05 2006-12-22
Minor additions on data lookup and conflict
resolution

0.06 2007-07-25

 Updated how data tracked
 Updated info from WinRunner to

TestPartner
 Updated info on issue tracking
 Updated common scenarios

0.07 2011-01-24

 Minor enhancements to the ‘Appendix
B: Common Data Scenarios Needing
Testing’ section

0.08 2011-04-19

 Incorporated comments from Mark M.
 Misc updates for clarification / process

updates

0.1 2011-04-26

 Moved ‘Common Data Scenarios’
section to be earlier in the document

 Misc review and updates

.2 2011-08-27

 Incorporating review comments (Pat
Rodriguez) -- Added ‘Data creation tips
and tricks’ section; info on Photo

 Added ‘NOTE: Max value supported:
2,147,483,647 (2^^31-1)’

 A couple of minor enhancements to
section ‘3.0 Common Data Scenarios
Needing Testing’

.3

 Added info in DOOR section
 Added several Wiki links where wiki

was referenced
 Updated info in Logging to reflect new

Splunk Logging
 Added several links, removed dead

links
 Changed some K drive links to new

SharePoint location.

.4 2011-11-16

 Reviewed and accepted/updated Rick’s
changes as needed

 Added info on SQL script for checking
DOOR

 Link to shared SQL for creating
enrollment data

 Added link to DataCopy SharePoint
page

 Misc updates as notice items while
accepting revisions

 Fixed link on where to find template on
SharePoint (for Test Plan and Test
Case Matrix)

 Minor updates to Testing Process

.5 2012-01-11

(b) (6)

DMDC QA

DOCUMENT VERSION: DMDC QA TESTING GUIDELINES v.7 28

 Minor updates to the automation
section

 Expanded the issue reporting section;
based on info from the DBIDS Defect
Reporting Standards

.6 2012-09-14

 Added information for AppMonitor
 Added info on Test Case Development
 Minor updates to issue tracking section

.7 2012-09-14

 Moved the test case development
process into the Test Process’ section

.7.1 2012-09-18

 Section 3: ‘Common Data Scenarios
Needing Testing’

o Added sub-headings (easier to
see what’s included by looking
at the TOC.)

o Minor updates ‘Name’ info
 Misc adding sub-headings throughout

(section 5, Test Heuristics)

.7.2 2012-11-07

 Added some info on the Oracle Data
Dictionary

 Updated TOC (no revisions marks –
everything shown as changed….

 Added section on reporting Data model
issues.

0.7.3 2012-12-06

 Added a bit about application versioning 0.7.4 2012-12-13
 Section 3: ‘Common Data Scenarios

Needing Testing’
o Added more Enrollment info

0.8 2013-02-08

(b) (6)

